Skip to content

Core Features

Essential DataFrame operations, filtering, grouping, and data manipulation powered by pandas and Dask with optional Rust acceleration.

Overview

  • 📊 DataFrame Operations - Full pandas/Dask API compatibility
  • 🔍 Advanced Filtering - SQL-like query expressions
  • 📈 Aggregations - groupby, pivot, statistics
  • 🔄 Joins & Merges - Efficient data combining
  • ⚡ Rust Fast-Paths - 8x faster metadata operations

Quick Start

import parquetframe as pf

# Read data
df = pf.read_parquet("data.parquet")

# Filter
active = df[df['status'] == 'active']

# Group and aggregate
summary = df.groupby('category').agg({'value': ['sum', 'mean', 'count']})

# Join
result = pf.merge(df1, df2, on='id', how='left')